Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Atheris is a Python fuzzing engine guided by coverage, designed to test both Python code and native extensions developed for CPython. It is built on the foundation of libFuzzer, providing an effective method for identifying additional bugs when fuzzing native code. Atheris is compatible with Linux (both 32- and 64-bit) and Mac OS X, supporting Python versions ranging from 3.6 to 3.10. Featuring an integrated libFuzzer, it is well-suited for fuzzing Python applications, but when targeting native extensions, users may need to compile from source to ensure compatibility between the libFuzzer version in Atheris and their Clang installation. Since Atheris depends on libFuzzer, which is a component of Clang, users of Apple Clang will need to install a different version of LLVM, as the default does not include libFuzzer. The implementation of Atheris as a coverage-guided, mutation-based fuzzer (LibFuzzer) simplifies the setup process by eliminating the need for input grammar definition. However, this approach can complicate the generation of inputs for code that processes intricate data structures. Consequently, while Atheris offers ease of use in many scenarios, it may face challenges when dealing with more complex parsing requirements.
Description
Peach is an advanced SmartFuzzer that excels in both generation and mutation-based fuzzing techniques. It necessitates the creation of Peach Pit files, which outline the data's structure, type information, and interrelations for effective fuzzing. In addition, Peach provides customizable configurations for a fuzzing session, such as selecting a data transport (publisher) and logging interface. Since its inception in 2004, Peach has undergone continuous development and is currently in its third major iteration. Fuzzing remains one of the quickest methods to uncover security vulnerabilities and identify bugs in software. By utilizing Peach for hardware fuzzing, students will gain insights into the essential principles of device fuzzing. Designed to address any data consumer, Peach can be applied to servers as well as embedded devices. A wide array of users, including researchers, companies, and government agencies, leverage Peach to detect hardware vulnerabilities. This course will specifically concentrate on employing Peach to target embedded devices while also gathering valuable information in case of a device crash, thus enhancing the understanding of fuzzing techniques in practical scenarios.
API Access
Has API
API Access
Has API
Integrations
Python
.NET
GitLab
Google OSS-Fuzz
LibFuzzer
Visual Studio
XML
Integrations
Python
.NET
GitLab
Google OSS-Fuzz
LibFuzzer
Visual Studio
XML
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Website
github.com/google/atheris
Vendor Details
Company Name
Peach Tech
Founded
2004
Country
United States
Website
peachtech.gitlab.io/peach-fuzzer-community/