Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Asimov serves as a fundamental platform for AI-search and vector-search, allowing developers to upload various content sources such as documents and logs, which it then automatically chunks and embeds, making them accessible through a single API for enhanced semantic search, filtering, and relevance for AI applications. By streamlining the management of vector databases, embedding pipelines, and re-ranking systems, it simplifies the process of ingestion, metadata parameterization, usage monitoring, and retrieval within a cohesive framework. With features that support content addition through a REST API and the capability to conduct semantic searches with tailored filtering options, Asimov empowers teams to create extensive search functionalities with minimal infrastructure requirements. The platform efficiently manages metadata, automates chunking, handles embedding, and facilitates storage solutions like MongoDB, while also offering user-friendly tools such as a dashboard, usage analytics, and smooth integration capabilities. Furthermore, its all-in-one approach eliminates the complexities of traditional search systems, making it an indispensable tool for developers aiming to enhance their applications with advanced search capabilities.
Description
NVIDIA NeMo Retriever is a suite of microservices designed for creating high-accuracy multimodal extraction, reranking, and embedding workflows while ensuring maximum data privacy. It enables rapid, contextually relevant responses for AI applications, including sophisticated retrieval-augmented generation (RAG) and agentic AI processes. Integrated within the NVIDIA NeMo ecosystem and utilizing NVIDIA NIM, NeMo Retriever empowers developers to seamlessly employ these microservices, connecting AI applications to extensive enterprise datasets regardless of their location, while also allowing for tailored adjustments to meet particular needs. This toolset includes essential components for constructing data extraction and information retrieval pipelines, adeptly extracting both structured and unstructured data, such as text, charts, and tables, transforming it into text format, and effectively removing duplicates. Furthermore, a NeMo Retriever embedding NIM processes these data segments into embeddings and stores them in a highly efficient vector database, optimized by NVIDIA cuVS to ensure faster performance and indexing capabilities, ultimately enhancing the overall user experience and operational efficiency. This comprehensive approach allows organizations to harness the full potential of their data while maintaining a strong focus on privacy and precision.
API Access
Has API
API Access
Has API
Pricing Details
$20 per month
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Asimov
Country
United States
Website
www.asimov.mov/
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/nemo-retriever