Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Apache Storm is a distributed computation system that is both free and open source, designed for real-time data processing. It simplifies the reliable handling of endless data streams, similar to how Hadoop revolutionized batch processing. The platform is user-friendly, compatible with various programming languages, and offers an enjoyable experience for developers. With numerous applications including real-time analytics, online machine learning, continuous computation, distributed RPC, and ETL, Apache Storm proves its versatility. It's remarkably fast, with benchmarks showing it can process over a million tuples per second on a single node. Additionally, it is scalable and fault-tolerant, ensuring that data processing is both reliable and efficient. Setting up and managing Apache Storm is straightforward, and it seamlessly integrates with existing queueing and database technologies. Users can design Apache Storm topologies to consume and process data streams in complex manners, allowing for flexible repartitioning between different stages of computation. For further insights, be sure to explore the detailed tutorial available.
Description
DL4J leverages state-of-the-art distributed computing frameworks like Apache Spark and Hadoop to enhance the speed of training processes. When utilized with multiple GPUs, its performance matches that of Caffe. Fully open-source under the Apache 2.0 license, the libraries are actively maintained by both the developer community and the Konduit team. Deeplearning4j, which is developed in Java, is compatible with any language that runs on the JVM, including Scala, Clojure, and Kotlin. The core computations are executed using C, C++, and CUDA, while Keras is designated as the Python API. Eclipse Deeplearning4j stands out as the pioneering commercial-grade, open-source, distributed deep-learning library tailored for Java and Scala applications. By integrating with Hadoop and Apache Spark, DL4J effectively introduces artificial intelligence capabilities to business settings, enabling operations on distributed CPUs and GPUs. Training a deep-learning network involves tuning numerous parameters, and we have made efforts to clarify these settings, allowing Deeplearning4j to function as a versatile DIY resource for developers using Java, Scala, Clojure, and Kotlin. With its robust framework, DL4J not only simplifies the deep learning process but also fosters innovation in machine learning across various industries.
API Access
Has API
API Access
Has API
Integrations
Akira AI
Amazon Kinesis
Apache Kafka
Apache Knox
Apache Ranger
Apache Spark
Azure HDInsight
Hadoop
RabbitMQ
Sematext Cloud
Integrations
Akira AI
Amazon Kinesis
Apache Kafka
Apache Knox
Apache Ranger
Apache Spark
Azure HDInsight
Hadoop
RabbitMQ
Sematext Cloud
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
storm.apache.org
Vendor Details
Company Name
Deeplearning4j
Founded
2019
Country
Japan
Website
deeplearning4j.org
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization