Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The Apache Lucene™ initiative is dedicated to creating open-source search technology. This initiative not only offers a fundamental library known as Lucene™ core but also includes PyLucene, which serves as a Python interface for Lucene. Lucene Core functions as a Java library that delivers robust features for indexing and searching, including capabilities for spellchecking, hit highlighting, and sophisticated analysis/tokenization. The PyLucene project enhances accessibility by allowing developers to utilize Lucene Core through Python. Backing this initiative is the Apache Software Foundation, which supports a variety of open-source software endeavors. Notably, Apache Lucene is made available under a license that is favorable for commercial use. It has established itself as a benchmark for search and indexing efficiency. Furthermore, Lucene is the foundational search engine for both Apache Solr™ and Elasticsearch™, which are widely used in various applications. From mobile platforms to major websites like Twitter, Apple, and Wikipedia, our core algorithms, together with the Solr search server, enable a multitude of applications globally. Ultimately, the objective of Apache Lucene is to deliver exceptional search capabilities that meet the needs of diverse users. Its continuous development reflects the commitment to innovation in search technology.
Description
Enhance your embedding metadata and tokens through an intuitive user interface. By employing sophisticated NLP cleansing methods such as TF-IDF, you can normalize and enrich your embedding tokens, which significantly boosts both efficiency and accuracy in applications related to large language models. Furthermore, optimize the pertinence of the content retrieved from a vector database by intelligently managing the structure of the content, whether by splitting or merging, and incorporating void or hidden tokens to ensure that the chunks remain semantically coherent. With Embedditor, you gain complete command over your data, allowing for seamless deployment on your personal computer, within your dedicated enterprise cloud, or in an on-premises setup. By utilizing Embedditor's advanced cleansing features to eliminate irrelevant embedding tokens such as stop words, punctuation, and frequently occurring low-relevance terms, you have the potential to reduce embedding and vector storage costs by up to 40%, all while enhancing the quality of your search results. This innovative approach not only streamlines your workflow but also optimizes the overall performance of your NLP projects.
API Access
Has API
API Access
Has API
Integrations
Apache Solr
Apache Usergrid
Docker
Elasticsearch
GitHub
IngestAI
Integrations
Apache Solr
Apache Usergrid
Docker
Elasticsearch
GitHub
IngestAI
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
lucene.apache.org
Vendor Details
Company Name
Embedditor
Website
embedditor.ai/
Product Features
Enterprise Search
AI / Machine Learning
Faceted Search / Filtering
Full Text Search
Fuzzy Search
Indexing
Text Analytics
eDiscovery