Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Apache Kylin™ is a distributed, open-source Analytical Data Warehouse designed for Big Data, aimed at delivering OLAP (Online Analytical Processing) capabilities in the modern big data landscape. By enhancing multi-dimensional cube technology and precalculation methods on platforms like Hadoop and Spark, Kylin maintains a consistent query performance, even as data volumes continue to expand. This innovation reduces query response times from several minutes to just milliseconds, effectively reintroducing online analytics into the realm of big data. Capable of processing over 10 billion rows in under a second, Kylin eliminates the delays previously associated with report generation, facilitating timely decision-making. It seamlessly integrates data stored on Hadoop with popular BI tools such as Tableau, PowerBI/Excel, MSTR, QlikSense, Hue, and SuperSet, significantly accelerating business intelligence operations on Hadoop. As a robust Analytical Data Warehouse, Kylin supports ANSI SQL queries on Hadoop/Spark and encompasses a wide array of ANSI SQL functions. Moreover, Kylin’s architecture allows it to handle thousands of simultaneous interactive queries with minimal resource usage, ensuring efficient analytics even under heavy loads. This efficiency positions Kylin as an essential tool for organizations seeking to leverage their data for strategic insights.
Description
VeloDB, which utilizes Apache Doris, represents a cutting-edge data warehouse designed for rapid analytics on large-scale real-time data.
It features both push-based micro-batch and pull-based streaming data ingestion that occurs in mere seconds, alongside a storage engine capable of real-time upserts, appends, and pre-aggregations. The platform delivers exceptional performance for real-time data serving and allows for dynamic interactive ad-hoc queries.
VeloDB accommodates not only structured data but also semi-structured formats, supporting both real-time analytics and batch processing capabilities. Moreover, it functions as a federated query engine, enabling seamless access to external data lakes and databases in addition to internal data.
The system is designed for distribution, ensuring linear scalability. Users can deploy it on-premises or as a cloud service, allowing for adaptable resource allocation based on workload demands, whether through separation or integration of storage and compute resources.
Leveraging the strengths of open-source Apache Doris, VeloDB supports the MySQL protocol and various functions, allowing for straightforward integration with a wide range of data tools, ensuring flexibility and compatibility across different environments.
API Access
Has API
API Access
Has API
Integrations
Apache Kafka
Apache Spark
Apache Doris
Apache Flink
Apache Hive
Apache Superset
Astro by Astronomer
Chat2DB
Hadoop
Hue
Integrations
Apache Kafka
Apache Spark
Apache Doris
Apache Flink
Apache Hive
Apache Superset
Astro by Astronomer
Chat2DB
Hadoop
Hue
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
kylin.apache.org
Vendor Details
Company Name
VeloDB
Founded
2023
Country
Singapore
Website
www.velodb.io
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge