Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Apache Helix serves as a versatile framework for managing clusters, ensuring the automatic oversight of partitioned, replicated, and distributed resources across a network of nodes. This tool simplifies the process of reallocating resources during instances of node failure, system recovery, cluster growth, and configuration changes. To fully appreciate Helix, it is essential to grasp the principles of cluster management. Distributed systems typically operate on multiple nodes to achieve scalability, enhance fault tolerance, and enable effective load balancing. Each node typically carries out key functions within the cluster, such as data storage and retrieval, as well as the generation and consumption of data streams. Once set up for a particular system, Helix functions as the central decision-making authority for that environment. Its design ensures that critical decisions are made with a holistic view, rather than in isolation. Although integrating these management functions directly into the distributed system is feasible, doing so adds unnecessary complexity to the overall codebase, which can hinder maintainability and efficiency. Therefore, utilizing Helix can lead to a more streamlined and manageable system architecture.

Description

Transform your Kubernetes autoscaling from a reactive approach to a proactive one with PredictKube, enabling you to initiate autoscaling processes ahead of anticipated load increases through our advanced AI predictions. By leveraging data over a two-week period, our AI model generates accurate forecasts that facilitate timely autoscaling decisions. The innovative predictive KEDA scaler, known as PredictKube, streamlines the autoscaling process, reducing the need for tedious manual configurations and enhancing overall performance. Crafted using cutting-edge Kubernetes and AI technologies, our KEDA scaler allows you to input data for more than a week and achieve proactive autoscaling with a forward-looking capacity of up to six hours based on AI-derived insights. The optimal scaling moments are identified by our trained AI, which meticulously examines your historical data and can incorporate various custom and public business metrics that influence traffic fluctuations. Furthermore, we offer free API access, ensuring that all users can utilize essential features for effective autoscaling. This combination of predictive capabilities and ease of use is designed to empower your Kubernetes management and enhance system efficiency.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon Web Services (AWS)
Google Cloud Platform
Kubeflow
Kubernetes
Kuna Exchange
Microsoft Azure
Prometheus
TensorFlow
Velas

Integrations

Amazon Web Services (AWS)
Google Cloud Platform
Kubeflow
Kubernetes
Kuna Exchange
Microsoft Azure
Prometheus
TensorFlow
Velas

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Apache Software Foundation

Founded

1999

Country

United States

Website

helix.apache.org

Vendor Details

Company Name

PredictKube

Country

United States

Website

predictkube.com

Product Features

Alternatives

Alternatives

Apache Mesos Reviews

Apache Mesos

Apache Software Foundation
Swarm Reviews

Swarm

Docker