Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Apache Giraph is a scalable iterative graph processing framework designed to handle large datasets efficiently. It has gained prominence at Facebook, where it is employed to analyze the intricate social graph created by user interactions and relationships. Developed as an open-source alternative to Google's Pregel, which was introduced in a seminal 2010 paper, Giraph draws inspiration from the Bulk Synchronous Parallel model of distributed computing proposed by Leslie Valiant. Beyond the foundational Pregel model, Giraph incorporates numerous enhancements such as master computation, sharded aggregators, edge-focused input methods, and capabilities for out-of-core processing. The ongoing enhancements and active support from a growing global community make Giraph an ideal solution for maximizing the analytical potential of structured datasets on a grand scale. Additionally, built upon the robust infrastructure of Apache Hadoop, Giraph is well-equipped to tackle complex graph processing challenges efficiently.

Description

The foundation of creating intelligent systems lies in the database, and Grakn serves as a sophisticated knowledge graph database. It features an incredibly user-friendly and expressive data schema that allows for the definition of hierarchies, hyper-entities, hyper-relations, and rules to establish detailed knowledge models. With its intelligent language, Grakn executes logical inferences on data types, relationships, attributes, and intricate patterns in real-time across distributed and stored data. It also offers built-in distributed analytics algorithms, such as Pregel and MapReduce, which can be accessed using straightforward queries within the language. The system provides a high level of abstraction over low-level patterns, simplifying the expression of complex constructs while optimizing query execution automatically. By utilizing Grakn KGMS and Workbase, enterprises can effectively scale their knowledge graphs. Furthermore, this distributed database is engineered to function efficiently across a network of computers through techniques like partitioning and replication, ensuring seamless scalability and performance.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon Web Services (AWS)
Google Cloud Platform

Integrations

Amazon Web Services (AWS)
Google Cloud Platform

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Apache Software Foundation

Founded

1999

Country

United States

Website

giraph.apache.org

Vendor Details

Company Name

Grakn Labs

Founded

2016

Website

grakn.ai/

Product Features

Alternatives

Alternatives

Aster SQL-GR Reviews

Aster SQL-GR

Teradata
AnzoGraph DB Reviews

AnzoGraph DB

Cambridge Semantics
Dgraph Reviews

Dgraph

Hypermode