Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon SageMaker Model Training streamlines the process of training and fine-tuning machine learning (ML) models at scale, significantly cutting down both time and costs while eliminating the need for infrastructure management. Users can leverage top-tier ML compute infrastructure, benefiting from SageMaker’s capability to seamlessly scale from a single GPU to thousands, adapting to demand as necessary. The pay-as-you-go model enables more effective management of training expenses, making it easier to keep costs in check. To accelerate the training of deep learning models, SageMaker’s distributed training libraries can divide extensive models and datasets across multiple AWS GPU instances, while also supporting third-party libraries like DeepSpeed, Horovod, or Megatron for added flexibility. Additionally, you can efficiently allocate system resources by choosing from a diverse range of GPUs and CPUs, including the powerful P4d.24xl instances, which are currently the fastest cloud training options available. With just one click, you can specify data locations and the desired SageMaker instances, simplifying the entire setup process for users. This user-friendly approach makes it accessible for both newcomers and experienced data scientists to maximize their ML training capabilities.
Description
Core ML utilizes a machine learning algorithm applied to a specific dataset to generate a predictive model. This model enables predictions based on incoming data, providing solutions for tasks that would be challenging or impossible to code manually. For instance, you could develop a model to classify images or identify particular objects within those images directly from their pixel data. Following the model's creation, it is essential to incorporate it into your application and enable deployment on users' devices. Your application leverages Core ML APIs along with user data to facilitate predictions and to refine or retrain the model as necessary. You can utilize the Create ML application that comes with Xcode to build and train your model. Models generated through Create ML are formatted for Core ML and can be seamlessly integrated into your app. Alternatively, a variety of other machine learning libraries can be employed, and you can use Core ML Tools to convert those models into the Core ML format. Once the model is installed on a user’s device, Core ML allows for on-device retraining or fine-tuning, enhancing its accuracy and performance. This flexibility enables continuous improvement of the model based on real-world usage and feedback.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Apple tvOS
Apple watchOS
BERT
CodeGPT
DALL·E 2
Hugging Face
NVIDIA NeMo Megatron
PyTorch
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Apple tvOS
Apple watchOS
BERT
CodeGPT
DALL·E 2
Hugging Face
NVIDIA NeMo Megatron
PyTorch
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/train/
Vendor Details
Company Name
Apple
Country
United States
Website
developer.apple.com/documentation/coreml
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization