Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon SageMaker Model Monitor enables users to choose which data to observe and assess without any coding requirements. It provides a selection of data types, including prediction outputs, while also capturing relevant metadata such as timestamps, model identifiers, and endpoints, allowing for comprehensive analysis of model predictions in relation to this metadata. Users can adjust the data capture sampling rate as a percentage of total traffic, particularly beneficial for high-volume real-time predictions, with all captured data securely stored in their designated Amazon S3 bucket. Additionally, the data can be encrypted, and users have the ability to set up fine-grained security measures, establish data retention guidelines, and implement access control protocols to ensure secure data handling. Amazon SageMaker Model Monitor also includes built-in analytical capabilities, utilizing statistical rules to identify shifts in data and variations in model performance. Moreover, users have the flexibility to create custom rules and define specific thresholds for each of those rules, enhancing the monitoring process further. This level of customization allows for a tailored monitoring experience that can adapt to varying project requirements and objectives.

Description

Coordinate, explore, and oversee all projects within your data science team efficiently. With Zepl's advanced search functionality, you can easily find and repurpose both models and code. The enterprise collaboration platform provided by Zepl allows you to query data from various sources like Snowflake, Athena, or Redshift while developing your models using Python. Enhance your data interaction with pivoting and dynamic forms that feature visualization tools such as heatmaps, radar, and Sankey charts. Each time you execute your notebook, Zepl generates a new container, ensuring a consistent environment for your model runs. Collaborate with teammates in a shared workspace in real time, or leave feedback on notebooks for asynchronous communication. Utilize precise access controls to manage how your work is shared, granting others read, edit, and execute permissions to facilitate teamwork and distribution. All notebooks benefit from automatic saving and version control, allowing you to easily name, oversee, and revert to previous versions through a user-friendly interface, along with smooth exporting capabilities to Github. Additionally, the platform supports integration with external tools, further streamlining your workflow and enhancing productivity.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker
Apache Spark
Apache Zeppelin
DataOps.live
GitHub
Google Cloud BigQuery
Highcharts
JavaScript
Jupyter Notebook
Keras
PyTorch
Python
R
SQL
Scala
TensorFlow

Integrations

Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker
Apache Spark
Apache Zeppelin
DataOps.live
GitHub
Google Cloud BigQuery
Highcharts
JavaScript
Jupyter Notebook
Keras
PyTorch
Python
R
SQL
Scala
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/sagemaker/model-monitor/

Vendor Details

Company Name

Zepl

Founded

2016

Country

United States

Website

www.zepl.com/product/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Data Science

Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Predictive Analytics

AI / Machine Learning
Benchmarking
Data Blending
Data Mining
Demand Forecasting
For Education
For Healthcare
Modeling & Simulation
Sentiment Analysis

Alternatives

Alternatives