Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
Description
With Amazon SageMaker Pipelines, you can effortlessly develop machine learning workflows using a user-friendly Python SDK, while also managing and visualizing your workflows in Amazon SageMaker Studio. By reusing and storing the steps you create within SageMaker Pipelines, you can enhance efficiency and accelerate scaling. Furthermore, built-in templates allow for rapid initiation, enabling you to build, test, register, and deploy models swiftly, thereby facilitating a CI/CD approach in your machine learning setup. Many users manage numerous workflows, often with various versions of the same model. The SageMaker Pipelines model registry provides a centralized repository to monitor these versions, simplifying the selection of the ideal model for deployment according to your organizational needs. Additionally, SageMaker Studio offers features to explore and discover models, and you can also access them via the SageMaker Python SDK, ensuring versatility in model management. This integration fosters a streamlined process for iterating on models and experimenting with new techniques, ultimately driving innovation in your machine learning projects.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Docker
GitHub
Google Cloud AutoML
Jupyter Notebook
MXNet
PyTorch
Python
R
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Docker
GitHub
Google Cloud AutoML
Jupyter Notebook
MXNet
PyTorch
Python
R
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/build/
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/sagemaker/pipelines/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Continuous Delivery
Application Lifecycle Management
Application Release Automation
Build Automation
Build Log
Change Management
Configuration Management
Continuous Deployment
Continuous Integration
Feature Toggles / Feature Flags
Quality Management
Testing Management
Continuous Integration
Build Log
Change Management
Configuration Management
Continuous Delivery
Continuous Deployment
Debugging
Permission Management
Quality Assurance Management
Testing Management
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization