Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon SageMaker JumpStart serves as a comprehensive hub for machine learning (ML), designed to expedite your ML development process. This platform allows users to utilize various built-in algorithms accompanied by pretrained models sourced from model repositories, as well as foundational models that facilitate tasks like article summarization and image creation. Furthermore, it offers ready-made solutions aimed at addressing prevalent use cases in the field. Additionally, users have the ability to share ML artifacts, such as models and notebooks, within their organization to streamline the process of building and deploying ML models. SageMaker JumpStart boasts an extensive selection of hundreds of built-in algorithms paired with pretrained models from well-known hubs like TensorFlow Hub, PyTorch Hub, HuggingFace, and MxNet GluonCV. Furthermore, the SageMaker Python SDK allows for easy access to these built-in algorithms, which cater to various common ML functions, including data classification across images, text, and tabular data, as well as conducting sentiment analysis. This diverse range of features ensures that users have the necessary tools to effectively tackle their unique ML challenges.

Description

Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

APERIO DataWise
Amazon SageMaker
Amazon SageMaker Unified Studio
Azure AI Search
Azure Container Registry
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Percept
BotCore
Cranium
Evvox
Kedro
Microsoft Azure
Microsoft Intelligent Data Platform
ModelOp
NVIDIA Triton Inference Server
Omnisient
Superwise
Wizata

Integrations

APERIO DataWise
Amazon SageMaker
Amazon SageMaker Unified Studio
Azure AI Search
Azure Container Registry
Azure Data Science Virtual Machines
Azure Database for MariaDB
Azure Kinect DK
Azure Percept
BotCore
Cranium
Evvox
Kedro
Microsoft Azure
Microsoft Intelligent Data Platform
ModelOp
NVIDIA Triton Inference Server
Omnisient
Superwise
Wizata

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/sagemaker/jumpstart/

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

azure.microsoft.com/en-us/services/machine-learning/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Data Labeling

Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

Vertex AI Reviews

Vertex AI

Google