Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon SageMaker HyperPod is a specialized and robust computing infrastructure designed to streamline and speed up the creation of extensive AI and machine learning models by managing distributed training, fine-tuning, and inference across numerous clusters equipped with hundreds or thousands of accelerators, such as GPUs and AWS Trainium chips. By alleviating the burdens associated with developing and overseeing machine learning infrastructure, it provides persistent clusters capable of automatically identifying and rectifying hardware malfunctions, resuming workloads seamlessly, and optimizing checkpointing to minimize the risk of interruptions — thus facilitating uninterrupted training sessions that can last for months. Furthermore, HyperPod features centralized resource governance, allowing administrators to establish priorities, quotas, and task-preemption rules to ensure that computing resources are allocated effectively among various tasks and teams, which maximizes utilization and decreases idle time. It also includes support for “recipes” and pre-configured settings, enabling rapid fine-tuning or customization of foundational models, such as Llama. This innovative infrastructure not only enhances efficiency but also empowers data scientists to focus more on developing their models rather than managing the underlying technology.

Description

Zipher is an innovative optimization platform that autonomously enhances the performance and cost-effectiveness of workloads on Databricks by removing the need for manual tuning and resource management, all while making real-time adjustments to clusters. Utilizing advanced proprietary machine learning algorithms, Zipher features a unique Spark-aware scaler that actively learns from and profiles workloads to determine the best resource allocations, optimize configurations for each job execution, and fine-tune various settings such as hardware, Spark configurations, and availability zones, thereby maximizing operational efficiency and minimizing waste. The platform continuously tracks changing workloads to modify configurations, refine scheduling, and distribute shared compute resources effectively to adhere to service level agreements (SLAs), while also offering comprehensive cost insights that dissect expenses related to Databricks and cloud services, enabling teams to pinpoint significant cost influencers. Furthermore, Zipher ensures smooth integration with major cloud providers like AWS, Azure, and Google Cloud, and is compatible with popular orchestration and infrastructure-as-code (IaC) tools, making it a versatile solution for various cloud environments. Its ability to adaptively respond to workload changes sets Zipher apart as a crucial tool for organizations striving to optimize their cloud operations.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon Web Services (AWS)
AWS EC2 Trn3 Instances
AWS Trainium
Amazon SageMaker
Apache Airflow
Azure Data Factory
Databricks Data Intelligence Platform
Google Cloud Platform
Microsoft Azure
Slack
Terraform
dbt

Integrations

Amazon Web Services (AWS)
AWS EC2 Trn3 Instances
AWS Trainium
Amazon SageMaker
Apache Airflow
Azure Data Factory
Databricks Data Intelligence Platform
Google Cloud Platform
Microsoft Azure
Slack
Terraform
dbt

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/ai/hyperpod/

Vendor Details

Company Name

Zipher

Founded

2023

Country

United States

Website

zipher.cloud/

Alternatives

Alternatives

Tinker Reviews

Tinker

Thinking Machines Lab
Pepperdata Reviews

Pepperdata

Pepperdata, Inc.