Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
The SageMaker Edge Agent enables the collection of data and metadata triggered by your specifications, facilitating the retraining of current models with real-world inputs or the development of new ones. This gathered information can also serve to perform various analyses, including assessments of model drift. There are three deployment options available to cater to different needs. GGv2, which is approximately 100MB in size, serves as a fully integrated AWS IoT deployment solution. For users with limited device capabilities, a more compact built-in deployment option is offered within SageMaker Edge. Additionally, for clients who prefer to utilize their own deployment methods, we accommodate third-party solutions that can easily integrate into our user workflow. Furthermore, Amazon SageMaker Edge Manager includes a dashboard that provides insights into the performance of models deployed on each device within your fleet. This dashboard not only aids in understanding the overall health of the fleet but also assists in pinpointing models that may be underperforming, ensuring that you can take targeted actions to optimize performance. By leveraging these tools, users can enhance their machine learning operations effectively.
Description
With Amazon SageMaker Pipelines, you can effortlessly develop machine learning workflows using a user-friendly Python SDK, while also managing and visualizing your workflows in Amazon SageMaker Studio. By reusing and storing the steps you create within SageMaker Pipelines, you can enhance efficiency and accelerate scaling. Furthermore, built-in templates allow for rapid initiation, enabling you to build, test, register, and deploy models swiftly, thereby facilitating a CI/CD approach in your machine learning setup. Many users manage numerous workflows, often with various versions of the same model. The SageMaker Pipelines model registry provides a centralized repository to monitor these versions, simplifying the selection of the ideal model for deployment according to your organizational needs. Additionally, SageMaker Studio offers features to explore and discover models, and you can also access them via the SageMaker Python SDK, ensuring versatility in model management. This integration fosters a streamlined process for iterating on models and experimenting with new techniques, ultimately driving innovation in your machine learning projects.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Amazon SageMaker Unified Studio
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Amazon SageMaker Unified Studio
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/sagemaker/edge/
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/sagemaker/pipelines/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Continuous Delivery
Application Lifecycle Management
Application Release Automation
Build Automation
Build Log
Change Management
Configuration Management
Continuous Deployment
Continuous Integration
Feature Toggles / Feature Flags
Quality Management
Testing Management
Continuous Integration
Build Log
Change Management
Configuration Management
Continuous Delivery
Continuous Deployment
Debugging
Permission Management
Quality Assurance Management
Testing Management
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization