Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Enhance machine learning model performance by capturing real-time training metrics and issuing alerts for any detected anomalies. To minimize both time and expenses associated with the training of ML models, the training processes can be automatically halted upon reaching the desired accuracy. Furthermore, continuous monitoring and profiling of system resource usage can trigger alerts when bottlenecks arise, leading to better resource management. The Amazon SageMaker Debugger significantly cuts down troubleshooting time during training, reducing it from days to mere minutes by automatically identifying and notifying users about common training issues, such as excessively large or small gradient values. Users can access alerts through Amazon SageMaker Studio or set them up via Amazon CloudWatch. Moreover, the SageMaker Debugger SDK further enhances model monitoring by allowing for the automatic detection of novel categories of model-specific errors, including issues related to data sampling, hyperparameter settings, and out-of-range values. This comprehensive approach not only streamlines the training process but also ensures that models are optimized for efficiency and accuracy.
Description
Spark offers a three-dimensional perspective of your application's interface along with the capability to adjust view settings dynamically during runtime, enabling you to design exceptional applications. If your app relies on notifications, Spark's notification monitor tracks each NSNotification as it is dispatched, providing a comprehensive stack trace, a detailed list of recipients, the methods invoked, and additional relevant information. This feature allows for a quick understanding of your app's architecture while enhancing debugging efficiency. By connecting your application to the Spark Inspector, you place your app's interface in the spotlight, with real-time updates reflecting your interactions. We keep track of every alteration within your app's view hierarchy, ensuring you remain informed about ongoing changes. The visual representation of your app in Spark is not only aesthetically pleasing but also fully customizable. You have the ability to alter nearly every aspect of your views, from class-level properties to CALayer transformations, and upon making any changes, Spark triggers a method within your app to directly implement that adjustment. This seamless integration fosters a more intuitive development experience, allowing for rapid iteration and refinement.
API Access
Has API
API Access
Has API
Integrations
AWS Lambda
Amazon CloudWatch
Amazon SageMaker
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
Autodesk A360
Change Healthcare Data & Analytics
Keras
MXNet
Integrations
AWS Lambda
Amazon CloudWatch
Amazon SageMaker
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
Autodesk A360
Change Healthcare Data & Analytics
Keras
MXNet
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$49.99 one-time payment
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/debugger/
Vendor Details
Company Name
Spark Inspector
Website
sparkinspector.com
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization