Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Enhance machine learning model performance by capturing real-time training metrics and issuing alerts for any detected anomalies. To minimize both time and expenses associated with the training of ML models, the training processes can be automatically halted upon reaching the desired accuracy. Furthermore, continuous monitoring and profiling of system resource usage can trigger alerts when bottlenecks arise, leading to better resource management. The Amazon SageMaker Debugger significantly cuts down troubleshooting time during training, reducing it from days to mere minutes by automatically identifying and notifying users about common training issues, such as excessively large or small gradient values. Users can access alerts through Amazon SageMaker Studio or set them up via Amazon CloudWatch. Moreover, the SageMaker Debugger SDK further enhances model monitoring by allowing for the automatic detection of novel categories of model-specific errors, including issues related to data sampling, hyperparameter settings, and out-of-range values. This comprehensive approach not only streamlines the training process but also ensures that models are optimized for efficiency and accuracy.

Description

Advancements in machine learning have led to significant breakthroughs in both business applications and research, impacting areas such as network security and medical diagnostics. To empower a broader audience to achieve similar innovations, we developed the Tensor Processing Unit (TPU). This custom-built machine learning ASIC is the backbone of Google services like Translate, Photos, Search, Assistant, and Gmail. By leveraging the TPU alongside machine learning, companies can enhance their success, particularly when scaling operations. The Cloud TPU is engineered to execute state-of-the-art machine learning models and AI services seamlessly within Google Cloud. With a custom high-speed network delivering over 100 petaflops of performance in a single pod, the computational capabilities available can revolutionize your business or lead to groundbreaking research discoveries. Training machine learning models resembles the process of compiling code: it requires frequent updates, and efficiency is key. As applications are developed, deployed, and improved, ML models must undergo continuous training to keep pace with evolving demands and functionalities. Ultimately, leveraging these advanced tools can position your organization at the forefront of innovation.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Lambda
Amazon SageMaker
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
Autodesk A360
Change Healthcare Data & Analytics
Cohere
Gmail
Google Assistant
Google Cloud AI Infrastructure
Google Cloud Deep Learning VM Image
Google Cloud Platform
Google Cloud Search
Google Photos
Google Translate
MXNet
PyTorch
Salesforce
TensorFlow

Integrations

AWS Lambda
Amazon SageMaker
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
Autodesk A360
Change Healthcare Data & Analytics
Cohere
Gmail
Google Assistant
Google Cloud AI Infrastructure
Google Cloud Deep Learning VM Image
Google Cloud Platform
Google Cloud Search
Google Photos
Google Translate
MXNet
PyTorch
Salesforce
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

$0.97 per chip-hour
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/debugger/

Vendor Details

Company Name

Google

Country

United States

Website

cloud.google.com/tpu/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

AWS Trainium Reviews

AWS Trainium

Amazon Web Services