Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon Redshift is the preferred choice among customers for cloud data warehousing, outpacing all competitors in popularity. It supports analytical tasks for a diverse range of organizations, from Fortune 500 companies to emerging startups, facilitating their evolution into large-scale enterprises, as evidenced by Lyft's growth. No other data warehouse simplifies the process of extracting insights from extensive datasets as effectively as Redshift. Users can perform queries on vast amounts of structured and semi-structured data across their operational databases, data lakes, and the data warehouse using standard SQL queries. Moreover, Redshift allows for the seamless saving of query results back to S3 data lakes in open formats like Apache Parquet, enabling further analysis through various analytics services, including Amazon EMR, Amazon Athena, and Amazon SageMaker. Recognized as the fastest cloud data warehouse globally, Redshift continues to enhance its performance year after year. For workloads that demand high performance, the new RA3 instances provide up to three times the performance compared to any other cloud data warehouse available today, ensuring businesses can operate at peak efficiency. This combination of speed and user-friendly features makes Redshift a compelling choice for organizations of all sizes.
Description
A data lakehouse represents a contemporary, open architecture designed for storing, comprehending, and analyzing comprehensive data sets. It merges the robust capabilities of traditional data warehouses with the extensive flexibility offered by widely used open-source data technologies available today. Constructing a data lakehouse can be accomplished on Oracle Cloud Infrastructure (OCI), allowing seamless integration with cutting-edge AI frameworks and pre-configured AI services such as Oracle’s language processing capabilities. With Data Flow, a serverless Spark service, users can concentrate on their Spark workloads without needing to manage underlying infrastructure. Many Oracle clients aim to develop sophisticated analytics powered by machine learning, applied to their Oracle SaaS data or other SaaS data sources. Furthermore, our user-friendly data integration connectors streamline the process of establishing a lakehouse, facilitating thorough analysis of all data in conjunction with your SaaS data and significantly accelerating the time to achieve solutions. This innovative approach not only optimizes data management but also enhances analytical capabilities for businesses looking to leverage their data effectively.
API Access
Has API
API Access
Has API
Integrations
NLSQL
Astera Centerprise
DataClarity Unlimited Analytics
DataOps DataFlow
Feast
Grouparoo
Hue
Lumi AI
Mackerel
Matik
Integrations
NLSQL
Astera Centerprise
DataClarity Unlimited Analytics
DataOps DataFlow
Feast
Grouparoo
Hue
Lumi AI
Mackerel
Matik
Pricing Details
$0.25 per hour
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/redshift/
Vendor Details
Company Name
Oracle
Founded
1977
Country
United States
Website
www.oracle.com/data-lakehouse/
Product Features
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Product Features
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge