Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.
Description
High-performance tasks associated with data-heavy AI, IoT, and HPC workloads have traditionally relied on costly, top-tier processors or accelerators like Graphics Processing Units (GPUs) to function optimally. Additionally, organizations utilizing cloud-based platforms for demanding computational tasks frequently encounter trade-offs that can be less than ideal. For instance, the outdated nature of processors and hardware in cloud infrastructures often fails to align with the latest software applications, while also raising concerns over excessive energy consumption and environmental implications. Furthermore, users often find certain features of cloud services to be cumbersome and challenging, which hampers their ability to create tailored cloud solutions that meet specific business requirements. This difficulty in achieving a perfect balance can lead to complications in identifying appropriate billing structures and obtaining adequate support for their unique needs. Ultimately, these issues highlight the pressing need for more adaptable and efficient cloud solutions in today's technology landscape.
API Access
Has API
API Access
Has API
Integrations
AMD Radeon ProRender
Amazon EC2
Amazon EKS
Amazon Elastic Inference
Amazon SageMaker
Amazon Web Services (AWS)
CUDA
OpenGL
Integrations
AMD Radeon ProRender
Amazon EC2
Amazon EKS
Amazon Elastic Inference
Amazon SageMaker
Amazon Web Services (AWS)
CUDA
OpenGL
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/ec2/instance-types/g4/
Vendor Details
Company Name
ScaleMatrix
Founded
2011
Country
United States
Website
www.scalematrix.com/scalecloud
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Cloud Management
Access Control
Billing & Provisioning
Capacity Analytics
Cost Management
Demand Monitoring
Multi-Cloud Management
Performance Analytics
SLA Management
Supply Monitoring
Workflow Approval