Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.

Description

There's no requirement to modify your coding practices or the methods you use to develop your projects. You can conduct profiling for applications that operate on multiple servers and involve various processes, providing clear insights into potential bottlenecks related to I/O, computational tasks, threading, or multi-process operations. You'll gain a profound understanding of the specific types of processor instructions that impact your overall performance. Additionally, you can monitor memory usage over time, allowing you to identify peak usage points and fluctuations throughout the entire memory landscape. Arm MAP stands out as a uniquely scalable profiler with low overhead, available both as an independent tool and as part of the comprehensive Arm Forge debugging and profiling suite. It is designed to assist developers of server and high-performance computing (HPC) software in speeding up their applications by pinpointing the root causes of sluggish performance. This tool is versatile enough to be employed on everything from multicore Linux workstations to advanced supercomputers. You have the option to profile realistic scenarios that matter the most to you while typically incurring less than 5% in runtime overhead. The user interface is interactive, fostering clarity and ease of use, making it well-suited for both developers and computational scientists alike, enhancing their productivity and efficiency.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AMD Radeon ProRender
Amazon EC2
Amazon EKS
Amazon Elastic Inference
Amazon SageMaker
Amazon Web Services (AWS)
Arm Forge
CUDA
Fortran
LaunchX
NetsPresso
OpenGL
Python

Integrations

AMD Radeon ProRender
Amazon EC2
Amazon EKS
Amazon Elastic Inference
Amazon SageMaker
Amazon Web Services (AWS)
Arm Forge
CUDA
Fortran
LaunchX
NetsPresso
OpenGL
Python

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/ec2/instance-types/g4/

Vendor Details

Company Name

Arm

Country

United Kingdom

Website

www.arm.com/products/development-tools/server-and-hpc/forge/map

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

HPC

Product Features

HPC

Alternatives

Alternatives

TotalView Reviews

TotalView

Perforce