Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon EC2 G4 instances are specifically designed to enhance the performance of machine learning inference and applications that require high graphics capabilities. Users can select between NVIDIA T4 GPUs (G4dn) and AMD Radeon Pro V520 GPUs (G4ad) according to their requirements. The G4dn instances combine NVIDIA T4 GPUs with bespoke Intel Cascade Lake CPUs, ensuring an optimal mix of computational power, memory, and networking bandwidth. These instances are well-suited for tasks such as deploying machine learning models, video transcoding, game streaming, and rendering graphics. On the other hand, G4ad instances, equipped with AMD Radeon Pro V520 GPUs and 2nd-generation AMD EPYC processors, offer a budget-friendly option for handling graphics-intensive workloads. Both instance types utilize Amazon Elastic Inference, which permits users to add economical GPU-powered inference acceleration to Amazon EC2, thereby lowering costs associated with deep learning inference. They come in a range of sizes tailored to meet diverse performance demands and seamlessly integrate with various AWS services, including Amazon SageMaker, Amazon ECS, and Amazon EKS. Additionally, this versatility makes G4 instances an attractive choice for organizations looking to leverage cloud-based machine learning and graphics processing capabilities.

Description

Amazon Elastic Inference provides an affordable way to enhance Amazon EC2 and Sagemaker instances or Amazon ECS tasks with GPU-powered acceleration, potentially cutting deep learning inference costs by as much as 75%. It is compatible with models built on TensorFlow, Apache MXNet, PyTorch, and ONNX. The term "inference" refers to the act of generating predictions from a trained model. In the realm of deep learning, inference can represent up to 90% of the total operational expenses, primarily for two reasons. Firstly, GPU instances are generally optimized for model training rather than inference, as training tasks can handle numerous data samples simultaneously, while inference typically involves processing one input at a time in real-time, resulting in minimal GPU usage. Consequently, relying solely on GPU instances for inference can lead to higher costs. Conversely, CPU instances lack the necessary specialization for matrix computations, making them inefficient and often too sluggish for deep learning inference tasks. This necessitates a solution like Elastic Inference, which optimally balances cost and performance in inference scenarios.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon EC2
Amazon Web Services (AWS)
AMD Radeon ProRender
Amazon EC2 G4 Instances
Amazon EKS
Amazon Elastic Inference
Amazon SageMaker
CUDA
MXNet
OpenGL
PyTorch
TensorFlow

Integrations

Amazon EC2
Amazon Web Services (AWS)
AMD Radeon ProRender
Amazon EC2 G4 Instances
Amazon EKS
Amazon Elastic Inference
Amazon SageMaker
CUDA
MXNet
OpenGL
PyTorch
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/ec2/instance-types/g4/

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/machine-learning/elastic-inference/

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

HPC

Product Features

Infrastructure-as-a-Service (IaaS)

Analytics / Reporting
Configuration Management
Data Migration
Data Security
Load Balancing
Log Access
Network Monitoring
Performance Monitoring
SLA Monitoring

Alternatives

Alternatives