Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon Comprehend is an innovative natural language processing (NLP) tool that employs machine learning techniques to extract valuable insights and connections from text without requiring any prior machine learning knowledge.
Your unstructured data holds a wealth of possibilities, with sources like customer emails, support tickets, product reviews, social media posts, and even advertising content offering critical insights into customer sentiments that can drive your business forward. The challenge lies in how to effectively tap into this rich resource. Fortunately, machine learning excels at pinpointing specific items of interest within extensive text datasets—such as identifying company names in analyst reports—and can also discern the underlying sentiments in language, whether that involves recognizing negative reviews or acknowledging positive interactions with customer service representatives, all at an impressive scale.
By leveraging Amazon Comprehend, you can harness the power of machine learning to reveal the insights and relationships embedded within your unstructured data, empowering your organization to make more informed decisions.
Description
The TextRazor API provides an efficient and precise means of uncovering the Who, What, Why, and How within your news articles. It features capabilities such as Entity Extraction, Disambiguation, and Linking, alongside Keyphrase Extraction, Automatic Topic Tagging, and Classification, supporting twelve different languages. This tool performs an in-depth analysis of your content, allowing for the extraction of Relations, Typed Dependencies between terms, and Synonyms, which empowers the development of advanced semantic applications that are context-aware. Furthermore, it enables the swift extraction of custom entities like products and companies, allowing users to create specific rules for tagging their content with personalized categories. TextRazor comprises a versatile text analysis infrastructure that can be utilized either via the cloud or through self-hosting. By integrating cutting-edge natural language processing techniques with an extensive repository of factual information, TextRazor aids in quickly deriving valuable insights from your documents, tweets, or web pages, making it an indispensable tool for content creators and analysts alike. This comprehensive approach ensures that users can maximize the effectiveness of their data processing and analysis efforts.
API Access
Has API
API Access
Has API
Integrations
AWS AI Services
AWS App Mesh
AWS Lambda
Amazon Comprehend Medical
Amazon S3
Amazon Web Services (AWS)
Axon Ivy
Camunda
Datasaur
FormKiQ
Integrations
AWS AI Services
AWS App Mesh
AWS Lambda
Amazon Comprehend Medical
Amazon S3
Amazon Web Services (AWS)
Axon Ivy
Camunda
Datasaur
FormKiQ
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$200 per month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/comprehend/
Vendor Details
Company Name
TextRazor
Founded
2011
Country
United Kingdom
Website
www.textrazor.com
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization
Text Mining
Boolean Queries
Document Filtering
Graphical Data Presentation
Language Detection
Predictive Modeling
Sentiment Analysis
Summarization
Tagging
Taxonomy Classification
Text Analysis
Topic Clustering
Product Features
Natural Language Processing
Co-Reference Resolution
In-Database Text Analytics
Named Entity Recognition
Natural Language Generation (NLG)
Open Source Integrations
Parsing
Part-of-Speech Tagging
Sentence Segmentation
Stemming/Lemmatization
Tokenization
Qualitative Data Analysis
Annotations
Collaboration
Data Visualization
Media Analytics
Mixed Methods Research
Multi-Language
Qualitative Comparative Analysis
Quantitative Content Analysis
Sentiment Analysis
Statistical Analysis
Text Analytics
User Research Analysis
Text Mining
Boolean Queries
Document Filtering
Graphical Data Presentation
Language Detection
Predictive Modeling
Sentiment Analysis
Summarization
Tagging
Taxonomy Classification
Text Analysis
Topic Clustering