Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Alpa is designed to simplify the process of automating extensive distributed training and serving with minimal coding effort. Originally created by a team at Sky Lab, UC Berkeley, it employs several advanced techniques documented in a paper presented at OSDI'2022. The Alpa community continues to expand, welcoming new contributors from Google. A language model serves as a probability distribution over sequences of words, allowing it to foresee the next word based on the context of preceding words. This capability proves valuable for various AI applications, including email auto-completion and chatbot functionalities. For further insights, one can visit the Wikipedia page dedicated to language models. Among these models, GPT-3 stands out as a remarkably large language model, boasting 175 billion parameters and utilizing deep learning to generate text that closely resembles human writing. Many researchers and media outlets have characterized GPT-3 as "one of the most interesting and significant AI systems ever developed," and its influence continues to grow as it becomes integral to cutting-edge NLP research and applications. Additionally, its implementation has sparked discussions about the future of AI-driven communication tools.
Description
LexVec represents a cutting-edge word embedding technique that excels in various natural language processing applications by factorizing the Positive Pointwise Mutual Information (PPMI) matrix through the use of stochastic gradient descent. This methodology emphasizes greater penalties for mistakes involving frequent co-occurrences while also addressing negative co-occurrences. Users can access pre-trained vectors, which include a massive common crawl dataset featuring 58 billion tokens and 2 million words represented in 300 dimensions, as well as a dataset from English Wikipedia 2015 combined with NewsCrawl, comprising 7 billion tokens and 368,999 words in the same dimensionality. Evaluations indicate that LexVec either matches or surpasses the performance of other models, such as word2vec, particularly in word similarity and analogy assessments. The project's implementation is open-source, licensed under the MIT License, and can be found on GitHub, facilitating broader use and collaboration within the research community. Furthermore, the availability of these resources significantly contributes to advancing the field of natural language processing.
API Access
Has API
API Access
Has API
Integrations
No details available.
Integrations
No details available.
Pricing Details
Free
Free Trial
Free Version
Pricing Details
Free
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Alpa
Website
opt.alpa.ai/
Vendor Details
Company Name
Alexandre Salle
Country
Brazil
Website
github.com/alexandres/lexvec
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization