Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

AWS ParallelCluster is a free, open-source tool designed for efficient management and deployment of High-Performance Computing (HPC) clusters within the AWS environment. It streamlines the configuration of essential components such as compute nodes, shared filesystems, and job schedulers, while accommodating various instance types and job submission queues. Users have the flexibility to engage with ParallelCluster using a graphical user interface, command-line interface, or API, which allows for customizable cluster setups and oversight. The tool also works seamlessly with job schedulers like AWS Batch and Slurm, making it easier to transition existing HPC workloads to the cloud with minimal adjustments. Users incur no additional costs for the tool itself, only paying for the AWS resources their applications utilize. With AWS ParallelCluster, users can effectively manage their computing needs through a straightforward text file that allows for the modeling, provisioning, and dynamic scaling of necessary resources in a secure and automated fashion. This ease of use significantly enhances productivity and optimizes resource allocation for various computational tasks.

Description

The NVIDIA HPC Software Development Kit (SDK) offers a comprehensive suite of reliable compilers, libraries, and software tools that are crucial for enhancing developer efficiency as well as the performance and adaptability of HPC applications. This SDK includes C, C++, and Fortran compilers that facilitate GPU acceleration for HPC modeling and simulation applications through standard C++ and Fortran, as well as OpenACC® directives and CUDA®. Additionally, GPU-accelerated mathematical libraries boost the efficiency of widely used HPC algorithms, while optimized communication libraries support standards-based multi-GPU and scalable systems programming. The inclusion of performance profiling and debugging tools streamlines the process of porting and optimizing HPC applications, and containerization tools ensure straightforward deployment whether on-premises or in cloud environments. Furthermore, with compatibility for NVIDIA GPUs and various CPU architectures like Arm, OpenPOWER, or x86-64 running on Linux, the HPC SDK equips developers with all the necessary resources to create high-performance GPU-accelerated HPC applications effectively. Ultimately, this robust toolkit is indispensable for anyone looking to push the boundaries of high-performance computing.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Batch
AWS Elastic Fabric Adapter (EFA)
AWS HPC
AWS Lambda
AWS Marketplace
AWS Parallel Computing Service
Amazon API Gateway
Amazon Web Services (AWS)
Azure Marketplace
Domino Enterprise MLOps Platform
GitHub
Python
Slurm

Integrations

AWS Batch
AWS Elastic Fabric Adapter (EFA)
AWS HPC
AWS Lambda
AWS Marketplace
AWS Parallel Computing Service
Amazon API Gateway
Amazon Web Services (AWS)
Azure Marketplace
Domino Enterprise MLOps Platform
GitHub
Python
Slurm

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/hpc/parallelcluster/

Vendor Details

Company Name

NVIDIA

Founded

1993

Country

United States

Website

developer.nvidia.com/hpc-sdk

Product Features

Product Features

HPC

Alternatives

Alternatives

TrinityX Reviews

TrinityX

Cluster Vision