Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
AWS Lake Formation is a service designed to streamline the creation of a secure data lake in just a matter of days. A data lake serves as a centralized, carefully organized, and protected repository that accommodates all data, maintaining both its raw and processed formats for analytical purposes. By utilizing a data lake, organizations can eliminate data silos and integrate various analytical approaches, leading to deeper insights and more informed business choices. However, the traditional process of establishing and maintaining data lakes is often burdened with labor-intensive, complex, and time-consuming tasks. This includes activities such as importing data from various sources, overseeing data flows, configuring partitions, enabling encryption and managing encryption keys, defining and monitoring transformation jobs, reorganizing data into a columnar structure, removing duplicate records, and linking related entries. After data is successfully loaded into the data lake, it is essential to implement precise access controls for datasets and continuously monitor access across a broad spectrum of analytics and machine learning tools and services. The comprehensive management of these tasks can significantly enhance the overall efficiency and security of data handling within an organization.
Description
Effortlessly load your data into or extract it from Hadoop and data lakes, ensuring it is primed for generating reports, visualizations, or conducting advanced analytics—all within the data lakes environment. This streamlined approach allows you to manage, transform, and access data stored in Hadoop or data lakes through a user-friendly web interface, minimizing the need for extensive training. Designed specifically for big data management on Hadoop and data lakes, this solution is not simply a rehash of existing IT tools. It allows for the grouping of multiple directives to execute either concurrently or sequentially, enhancing workflow efficiency. Additionally, you can schedule and automate these directives via the public API provided. The platform also promotes collaboration and security by enabling the sharing of directives. Furthermore, these directives can be invoked from SAS Data Integration Studio, bridging the gap between technical and non-technical users. It comes equipped with built-in directives for various tasks, including casing, gender and pattern analysis, field extraction, match-merge, and cluster-survive operations. For improved performance, profiling processes are executed in parallel on the Hadoop cluster, allowing for the seamless handling of large datasets. This comprehensive solution transforms the way you interact with data, making it more accessible and manageable than ever.
API Access
Has API
API Access
Has API
Integrations
AWS App Mesh
Amazon Athena
Amazon DataZone
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Collate
Hadoop
Impala
Integrations
AWS App Mesh
Amazon Athena
Amazon DataZone
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Collate
Hadoop
Impala
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/lake-formation/
Vendor Details
Company Name
SAS
Founded
1976
Country
United States
Website
www.sas.com/en_us/software/data-loader-for-hadoop.html
Product Features
Product Features
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface