Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
AWS IoT Core enables seamless connectivity between IoT devices and the AWS cloud, eliminating the need for server provisioning or management. Capable of accommodating billions of devices and handling trillions of messages, it ensures reliable and secure processing and routing of communications to AWS endpoints and other devices. This service empowers applications to continuously monitor and interact with all connected devices, maintaining functionality even during offline periods. Furthermore, AWS IoT Core simplifies the integration of various AWS and Amazon services, such as AWS Lambda, Amazon Kinesis, Amazon S3, Amazon SageMaker, Amazon DynamoDB, Amazon CloudWatch, AWS CloudTrail, Amazon QuickSight, and Alexa Voice Service, facilitating the development of IoT applications that collect, process, analyze, and respond to data from connected devices without the burden of infrastructure management. By utilizing AWS IoT Core, you can effortlessly connect an unlimited number of devices to the cloud and facilitate communication among them, streamlining your IoT solutions. This capability significantly enhances the efficiency and scalability of your IoT initiatives.
Description
Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
AWS App Mesh
AWS CloudTrail
AWS IoT ExpressLink
AWS Lambda
Amazon CloudWatch
Amazon DynamoDB
Amazon S3
Everyware Software Framework (ESF)
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
AWS App Mesh
AWS CloudTrail
AWS IoT ExpressLink
AWS Lambda
Amazon CloudWatch
Amazon DynamoDB
Amazon S3
Everyware Software Framework (ESF)
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/iot-core/
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/build/
Product Features
IoT
Application Development
Big Data Analytics
Configuration Management
Connectivity Management
Data Collection
Data Management
Device Management
Performance Management
Prototyping
Visualization
IoT Analytics
Activity Dashboard
Activity Tracking
Analytics
Asset Tracking
Data Collection
Data Synchronization
Data Visualization
ETL
Multiple Data Sources
Performance Analysis
Real-Time Analytics
Real-Time Data
Real-Time Monitoring
Status Tracking
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization