Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
AWS Inferentia accelerators, engineered by AWS, aim to provide exceptional performance while minimizing costs for deep learning (DL) inference tasks. The initial generation of AWS Inferentia accelerators supports Amazon Elastic Compute Cloud (Amazon EC2) Inf1 instances, boasting up to 2.3 times greater throughput and a 70% reduction in cost per inference compared to similar GPU-based Amazon EC2 instances. Numerous companies, such as Airbnb, Snap, Sprinklr, Money Forward, and Amazon Alexa, have embraced Inf1 instances and experienced significant advantages in both performance and cost. Each first-generation Inferentia accelerator is equipped with 8 GB of DDR4 memory along with a substantial amount of on-chip memory. The subsequent Inferentia2 model enhances capabilities by providing 32 GB of HBM2e memory per accelerator, quadrupling the total memory and decoupling the memory bandwidth, which is ten times greater than its predecessor. This evolution in technology not only optimizes the processing power but also significantly improves the efficiency of deep learning applications across various sectors.
Description
NVIDIA GPU Cloud (NGC) serves as a cloud platform that harnesses GPU acceleration for deep learning and scientific computations. It offers a comprehensive catalog of fully integrated containers for deep learning frameworks designed to optimize performance on NVIDIA GPUs, whether in single or multi-GPU setups. Additionally, the NVIDIA train, adapt, and optimize (TAO) platform streamlines the process of developing enterprise AI applications by facilitating quick model adaptation and refinement. Through a user-friendly guided workflow, organizations can fine-tune pre-trained models with their unique datasets, enabling them to create precise AI models in mere hours instead of the traditional months, thereby reducing the necessity for extensive training periods and specialized AI knowledge. If you're eager to dive into the world of containers and models on NGC, you’ve found the ideal starting point. Furthermore, NGC's Private Registries empower users to securely manage and deploy their proprietary assets, enhancing their AI development journey.
API Access
Has API
API Access
Has API
Integrations
AWS Parallel Computing Service
Amazon EC2 Inf1 Instances
Amazon EC2 Trn1 Instances
Amazon Web Services (AWS)
Anyscale
Domino Enterprise MLOps Platform
NVIDIA GPU-Optimized AMI
Nutanix Enterprise AI
PyTorch
TensorFlow
Integrations
AWS Parallel Computing Service
Amazon EC2 Inf1 Instances
Amazon EC2 Trn1 Instances
Amazon Web Services (AWS)
Anyscale
Domino Enterprise MLOps Platform
NVIDIA GPU-Optimized AMI
Nutanix Enterprise AI
PyTorch
TensorFlow
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/machine-learning/inferentia/
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
ngc.nvidia.com
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Infrastructure-as-a-Service (IaaS)
Analytics / Reporting
Configuration Management
Data Migration
Data Security
Load Balancing
Log Access
Network Monitoring
Performance Monitoring
SLA Monitoring
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization