Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a secure and curated collection of frameworks, tools, and dependencies to enhance deep learning capabilities in cloud environments. Designed for both Amazon Linux and Ubuntu, these Amazon Machine Images (AMIs) are pre-equipped with popular frameworks like TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, enabling quick deployment and efficient operation of these tools at scale. By utilizing these resources, you can create sophisticated machine learning models for the development of autonomous vehicle (AV) technology, thoroughly validating your models with millions of virtual tests. The setup and configuration process for AWS instances is expedited, facilitating faster experimentation and assessment through access to the latest frameworks and libraries, including Hugging Face Transformers. Furthermore, the incorporation of advanced analytics, machine learning, and deep learning techniques allows for the discovery of trends and the generation of predictions from scattered and raw health data, ultimately leading to more informed decision-making. This comprehensive ecosystem not only fosters innovation but also enhances operational efficiency across various applications.
Description
The RAPIDS software library suite, designed on CUDA-X AI, empowers users to run comprehensive data science and analytics workflows entirely on GPUs. It utilizes NVIDIA® CUDA® primitives for optimizing low-level computations while providing user-friendly Python interfaces that leverage GPU parallelism and high-speed memory access. Additionally, RAPIDS emphasizes essential data preparation processes tailored for analytics and data science, featuring a familiar DataFrame API that seamlessly integrates with various machine learning algorithms to enhance pipeline efficiency without incurring the usual serialization overhead. Moreover, it supports multi-node and multi-GPU setups, enabling significantly faster processing and training on considerably larger datasets. By incorporating RAPIDS, you can enhance your Python data science workflows with minimal code modifications and without the need to learn any new tools. This approach not only streamlines the model iteration process but also facilitates more frequent deployments, ultimately leading to improved machine learning model accuracy. As a result, RAPIDS significantly transforms the landscape of data science, making it more efficient and accessible.
API Access
Has API
API Access
Has API
Integrations
AWS Marketplace
AWS Neuron
Activeeon ProActive
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Web Services (AWS)
Apache Spark
Capital One Spark Business Banking
Integrations
AWS Marketplace
AWS Neuron
Activeeon ProActive
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Web Services (AWS)
Apache Spark
Capital One Spark Business Banking
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/machine-learning/amis/
Vendor Details
Company Name
NVIDIA
Founded
1993
Country
United States
Website
developer.nvidia.com/rapids
Product Features
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports