Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

AWS Deep Learning AMIs (DLAMI) offer machine learning professionals and researchers a secure and curated collection of frameworks, tools, and dependencies to enhance deep learning capabilities in cloud environments. Designed for both Amazon Linux and Ubuntu, these Amazon Machine Images (AMIs) are pre-equipped with popular frameworks like TensorFlow, PyTorch, Apache MXNet, Chainer, Microsoft Cognitive Toolkit (CNTK), Gluon, Horovod, and Keras, enabling quick deployment and efficient operation of these tools at scale. By utilizing these resources, you can create sophisticated machine learning models for the development of autonomous vehicle (AV) technology, thoroughly validating your models with millions of virtual tests. The setup and configuration process for AWS instances is expedited, facilitating faster experimentation and assessment through access to the latest frameworks and libraries, including Hugging Face Transformers. Furthermore, the incorporation of advanced analytics, machine learning, and deep learning techniques allows for the discovery of trends and the generation of predictions from scattered and raw health data, ultimately leading to more informed decision-making. This comprehensive ecosystem not only fosters innovation but also enhances operational efficiency across various applications.

Description

Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS Marketplace
Amazon Web Services (AWS)
AWS Elastic Fabric Adapter (EFA)
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Docker
Fabric for Deep Learning (FfDL)
Intel Tiber AI Studio
Lambda
NVIDIA DIGITS
OpenVINO
Polyaxon
Pop!_OS
PuppyGraph
Zebra by Mipsology

Integrations

AWS Marketplace
Amazon Web Services (AWS)
AWS Elastic Fabric Adapter (EFA)
AWS Neuron
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P4 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Docker
Fabric for Deep Learning (FfDL)
Intel Tiber AI Studio
Lambda
NVIDIA DIGITS
OpenVINO
Polyaxon
Pop!_OS
PuppyGraph
Zebra by Mipsology

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/machine-learning/amis/

Vendor Details

Company Name

BAIR

Country

United States

Website

caffe.berkeleyvision.org

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

DeepSpeed Reviews

DeepSpeed

Microsoft
AWS Neuron Reviews

AWS Neuron

Amazon Web Services
MXNet Reviews

MXNet

The Apache Software Foundation
Vertex AI Reviews

Vertex AI

Google